Experts

Daniela Salvatori: TPI Utrecht
Expert interviews
HealthEducation

Daniela Salvatori: TPI Utrecht

Prof. dr. Daniela Salvatori, chair of TPI Utrecht, presents the aims of the local TPI group and invites all who want to share their ideas or questions on the transition towards animal-free innovations to get in touch via uu.nl/tpi.
02:235 months ago
Elly Hol (UMC Utrecht): possibilities for neuroscience
Expert interviews
HealthInnovation

Elly Hol (UMC Utrecht): possibilities for neuroscience

Prof. dr. Elly Hol (neuroscientist) talks about the opportunities for conducting animal-free research in Utrecht. She explains why it is necessary to use animal models next to cell-based models, for example for her Alzheimer research. More info at https://www.umcutrecht.nl/en/research/center/brain-center , http://translationalneuroscience.nl , http://www.ellyhollab.eu .
00:597 months ago
Wim de Leeuw: Aim and activities of TPI Utrecht
Expert interviews
EducationInnovation

Wim de Leeuw: Aim and activities of TPI Utrecht

TPI Utrecht facilitates the Utrecht infrastructure to stimulate the transition to animal-free innovation. There is a helpdesk, a group of ambassadors, and a 3Rs Stimulus Fund. A digital marketplace for exchange of tissues is being developed, and as well a hybrid centre for biomedical translation, where there will increasingly be place for animal-free techniques.
01:568 months ago
Glenn Embrechts (European Schoolnet)
Expert interviews
Education

Glenn Embrechts (European Schoolnet)

Skills in Science, Technology, Engineering and Mathematics (STEM) are becoming an increasingly important part of basic literacy in today's knowledge economy. European Schoolnet is at the forefront of the debate on how to attract more people to science and technology to address the future skills gap that Europe is facing. STEM is one of European Schoolnet's major thematic domains. We have been involved in more than 30 STEM education initiatives, financed through European Schoolnet's Ministry of Education members, industry partners, or by the European Union's funding programmes. More information on social media: Social media: https://m.facebook.com/labonderwijs and https://www.instagram.com/lab_gedrevenonderwijs/ .
02:2417 months ago

Innovation

Human neuronal cell models for in vitro neurotoxicity screening and seizure liability assessment
Innovation examples
ToxicologyInnovationIn vitro

Human neuronal cell models for in vitro neurotoxicity screening and seizure liability assessment

Anke Tukker was a PhD candidate in the Neurotoxicology Research group of Dr. Remco Westerink at the Institute for Risk Assessment Sciences at Utrecht University. Dr Westerink’s research group investigates the mechanisms of action of toxic substances on a cellular and molecular level using in vitro systems. Anke's project aimed to develop a human induced pluripotent stem cell (hiPSC)-derived neuronal model for in vitro neurotoxicity screening and seizure liability assessment. Using micro-electrode arrays (MEAs), she showed that these models mimic in vivo neuronal network activity. When these hiPSC-derived neurons are mixed with hiPSC-derived astrocytes, they can be used for in vitro seizure liability assessment. Comparing these data with data obtained from the current used model of ex vivo rodent cortical cultures, she found that these human cells outperform the rodent model. Here research thus contributes towards animal-free neurotoxicity testing. Anke Tukker has won the public vote of the Hugo van Poelgeest prize 2020 for her research on human neuronal cell models for in vitro neurotoxicity screening and seizure liability assessment. Neurotoxicology Research Group, IRAS, Utrecht University: https://ntx.iras.uu.nl/NTX_at_Iras
01:5810 days ago
Human pluripotent stem cell derived cardiomyocytes for disease modelling and drug discovery
Innovation examples
ToxicologyInnovationIn vitro

Human pluripotent stem cell derived cardiomyocytes for disease modelling and drug discovery

Berend van Meer did his PhD research in the research group of prof. Christine Mummery at the department of Anatomy and Embryology of the Leiden University Medical Center. In this group, human pluripotent stem cell derived (Organ-on-Chip) models are being developed, mostly cardiovascular models. The work of Berend aimed to understand how well these stem cell based cardiac models can predict the effect of (well-known) drug therapies in patients. Importantly, the outcomes of the experiments were compared to very similar measurements in rabbit heart muscle cells. And while animal models predicted less than 70% correctly, the human stem cell based models predicted almost 80% of the expected effects correctly. The research contributes to understanding the relevance of stem cell based models and strengthens the confidence regulators and pharmaceutical companies have in such models as animal alternatives in the drug development pipeline. Berend van Meer has won the Hugo van Poelgeest prize 2020 for his research on human pluripotent stem cell derived cardiomyocytes for disease modelling and drug discovery. Christine Mummery's lab on Heart on Chip, Disease modeling and toxicity: https://www.lumc.nl/org/anatomie-embryologie/research/902040935402533/
01:5610 days ago
Cartilage-on-a-chip for studying joint degenerative diseases
Innovation examples
ToxicologyInnovationIn vitro

Cartilage-on-a-chip for studying joint degenerative diseases

Carlo Alberto Paggi is currently a PhD candidate at the University of Twente in the research group of Prof. Marcel Karperien and Prof. Séverine Le Gac. Karperien’s lab focus on the biological aspects of osteoarthritic research while Le Gac’s specialize in organ-on-chip development. The project of Carlo Alberto is developing a joint-on-chip platform to create a reliable in vitro model to study disease progression in osteo- or rheumatoid arthritis. The model combines different organ-on-chips aimed at replicating each a tissue around the joint such as cartilage, bone and ligaments. This new technology focuses on better reproducing human models and at substituting the use of animal models for drug research. If you want to know something more about the project and the groups, you can follow the link in the video. Carlo Paggi was nominated for the Hugo van Poelgeest prize for his research on a cartilage-on-a-chip model to study joint degenerative diseases Karperien’s lab of Developmental Bioengineering: https://www.utwente.nl/en/tnw/dbe/ Le Gac’s lab of Applied Microfluidics for BioEngineering Research: http://www.severinelegac.com/ Linkedin: https://www.linkedin.com/in/carlo-alberto-paggi-76500b135/
01:5810 days ago
Katja Wolthers (Amsterdam UMC) - virus research in human models: let's show some guts!
Innovation examples
HealthInnovation

Katja Wolthers (Amsterdam UMC) - virus research in human models: let's show some guts!

To study viruses that make people sick, we often use laboratory animals. However, virus infections in animals are different than in humans. New 3D culture models or 'organoids', which look like human organs in a petri dish, offer a unique opportunity to investigate how viruses enter the human body and cause disease. Our research focuses on enteroviruses such as polio. Due to vaccination, polio is rare, but other enteroviruses are increasingly a threat to young children and patients with impaired immune defenses. There are no medications available, because knowledge about infections with enteroviruses is limited. In our research we use organoids to see how enteroviruses enter the human body and by which means you can prevent that, without the use of laboratory animals. With this project we want to show that our technique can replace the use of laboratory animals in virus research.
02:317 months ago

Meetings

Helpathon #4 - can you help Frank?
Meeting videos
HelpathonsHealth

Helpathon #4 - can you help Frank?

Can you help Frank with integrating an immune system into a macaque lung organoid to address local immunity to tuberculosis with his vaccination strategy? Join Helpathon #4, look at www.tpihelpathon.nl/coming-up ! Frank Verreck does research on tuberculosis at the Biomedical Primate Research Center (BPRC). Tuberculosis is the most deadly infectious disease worldwide! For the past hundred years, BCG (Bacillus Calmette Guérin) vaccinations take place through the skin. Research shows that macaques can be better protected from this infection by vaccination through their lungs. Frank really wants to further study the potential of this alternative vaccination strategy. He wants to understand how this BCG vaccination works in macaques lungs.
01:218 months ago
Helpathon #4 - can you help Raissa?
Meeting videos
HelpathonsIn vitro

Helpathon #4 - can you help Raissa?

Can you help Raissa find a more complex organoid-like brain and immune model based on rhesus microglia to study aging in relation to neuroinflammation and neurodegenerative diseases? Join Helpathon #4, look at www.tpihelpathon.nl/coming-up ! Raissa Timmerman is a PhD student at the alternative unit at the Biomedical Primate Research Center. A better understanding of aging of the brain is key to studying neuroinflammation and neurodegenerative diseases. We believe there is a potential for breakthrough in using our existing live macaque data obtained from past aging experiments to develop more complex in vitro rhesus brain-like models and then to correlate all this data with data from human in vitro models and human live data.
01:328 months ago
Helpathon #4 - can you help Anne-Marie?
Meeting videos
HelpathonsIn vitro

Helpathon #4 - can you help Anne-Marie?

Can you help Anne-Marie develop a more organ-like Rhesus 3D liver model in which she can study the dormancy and the waking up of malaria parasites? Join Helpathon #4, look at www.tpihelpathon.nl/coming-up ! Anne- Marie Zeeman is a researcher at the Biomedical Primate Research Center (BPRC). Anne-Marie studies recurrent malaria ( P. vivax). She successfully developed a single cell layer in vitro model to study compounds affecting dormant and active malaria parasites in the liver of Rhesus monkeys. We believe that the cross correlation between in vitro Rhesus and in vitro human models will provide the missing link required to improve the drug development process and aid transition. A more refined Rhesus in vitro model can reduce the number of monkeys currently used for testing drugs. The data from in vivo monkeys combined with new in vitro models could help validate and develop reliable human in vitro models making testing on monkeys unnecessary detours.
01:388 months ago
Sign in for Helpathon #3: Saskia van Mil
Meeting videos
HelpathonsHealth

Sign in for Helpathon #3: Saskia van Mil

Saskia van Mil calls for a Helpathon! She invites you to help her develop a human model for studying liver metabolism? You can sign in for this Helpathon here: tpihelpathon.nl. Online, 18th - 19th of June 2020.
01:1611 months ago