Health

 Helpathon #8 – Can you help Margot?
Meeting videos
HealthInnovationIn vitro

Helpathon #8 – Can you help Margot?

Margot Beukers is the LymphChip program manager. Can you help Margot bring the field forward by sharing your experience with animal-free alternatives for Foetal Calf Serum and Matrigel? Click on the link in the video to sign up and read more information on this Helpathon on the website (https://www.helpathonhotel.org/coming-up).
01:032 months ago
Helpathon #8 – Can you help Jasper?
Meeting videos
HealthInnovationIn vitro

Helpathon #8 – Can you help Jasper?

Jasper Koning is doing research on skin diseases. He believes it must be possible to find an alternative to Foetal Calf Serum to grow immune cells. Can you help him find alternatives to Foetal Calf Serum so he can build human models animal free? Jasper is especially looking for researchers with practical experience in applying alternatives. He did some trials himself with mixed results. Click on the link in the video to sign up and read more information on this Helpathon on the website (https://www.helpathonhotel.org/coming-up).
01:162 months ago
Helpathon #8 – Can you help Germaine?
Meeting videos
HealthInnovationIn vitro

Helpathon #8 – Can you help Germaine?

Germaine Aalderink is investigating the uptake of lipids travelling from the gut into the lymphatic system and further explore the merits of this alternative drug intake strategy. Can you help Germaine make an intestinal and lymphatic model with an alternative for Matrigel that is animal-free? She wants to know what components are essential in each phase of intestinal development and is interested in both the positive and negative experiences of other researchers with the use of alternatives for Matrigel. Click on the link in the video to sign up and read more information on this Helpathon on the website (https://www.helpathonhotel.org/coming-up).
01:212 months ago
Using skin and mucosa models to replace animal testing
Innovation examples
HealthInnovationIn vitro

Using skin and mucosa models to replace animal testing

The skin and mucosa are important tissues that differ between species in health and disease. The group of Sue Gibbs works on the development of advanced in vitro models that mimic these two tissues, specialising in immunity models and organ-on-a-chip technologies. They use skin models to study for example melanoma, skin allergies, eczema, burns and healing wounds. Dental models are used for the safety of materials used in dentistry, for example to test the quality of the implant and false tooth when it comes to attaching to the soft tissue. Their ambition is to expand into the field of multi-organ technology to make even more relevant models for the human skin and mucosa. Click on the link in the video to watch more or read the interview with Sue he[https://vu.nl/en/research/more-about/using-skin-and-mucosa-models-to-replace-animal-testing]re.
00:302 months ago
Using data and computational modelling in biomedical research
Innovation examples
HealthInnovationData

Using data and computational modelling in biomedical research

Bioinformatics and systems biology hold great promise to translate the wealth of biological data into meaningful knowledge about human health and disease. The group of Bas Teusink helps biologists to deal with high throughput data, for example metabolomics (how cell metabolism works) and proteomics (how protein networks work) from patient material or cell cultures. This can help to better understand disease mechanisms and aid drug targeting or personalised medicine. In the future, combining data from different models (in vitro, in vivo and human data) could become a digital model of humans, or a “ digital twin”. Click on the link in the video to watch more or read the interview with Bas (and Jaap Heringa) he[https://vu.nl/en/research/more-about/using-data-and-computational-modelling-in-biomedical-research]re.
00:302 months ago
Treating genetic heart disease using engineered heart tissue
Innovation examples
HealthInnovationIn vitro

Treating genetic heart disease using engineered heart tissue

Some heart disease are caused by a gene mutation in the cardiac muscle cells. People with this genetic disease are affected it between the ages of 20 and 40, and there is no preventative treatment for this. The group of Jolanda van der Velden works on the development of engineered heart tissue made from human stem cells to unravel disease mechanisms and test drugs to treat the disease. They use different kinds of stem-cell-based cultures. 2D cell cultures are useful to test a large number of candidate drugs, while patient-derived stem cells that are differentiated in heart cells can help to get detailed understanding of the disease and test the most promising treatments. Click on the link in the video to watch more or read the interview with Jolanda here (https://vu.nl/en/research/more-about/treating-genetic-heart-disease-using-engineered-heart-tissue).
00:322 months ago
Using human organoid technology to treat viral infections in children
Innovation examples
HealthInnovationIn vitro

Using human organoid technology to treat viral infections in children

Viral infection in (very young) children can be detrimental to their neurological health. The mechanisms of some viruses work very differently in children compared with adults, which is not well understood yet. The research group of Dasja Pajkrt studies viral infections in children from the clinic by using human-derived organoids. They focus on three groups of viruses that can severely affect children: picornaviruses (responsible for illnesses like meningo-encephalitis and sepsis), cytomegalovirus (which can cause severe disabilities in children born with this virus) and HIV. The human-derived organoids or multi-organ systems allow for detailed mechanistic analysis of the disease and possible treatments that can be brought back to the clinic. Click on the link in the video to watch more or read the interview with Dasja here (https://vu.nl/en/research/more-about/using-human-organoid-technology-to-treat-viral-infections-in-children).
00:322 months ago
Tumor-on-chips to study delivery of protein therapeutics
Innovation examples
HealthInnovationIn vitro

Tumor-on-chips to study delivery of protein therapeutics

Valentina is a PhD candidate at the Department of Biochemistry at Radboudumc. Her research focuses on developing and applying organ-on-chip technologies, such as tumor-on-a-chip systems, to study the tissue-specific and cytosolic delivery of protein therapeutics. Valentina's research has also aimed at bridging the gap between engineers and biologists, promoting the use of microfluidic organ-on-chip technologies to answer more relevant biological questions. One example of this is the development of a mathematical model that could be applied to study drug delivery and diffusion in a tumor-on-a-chip system and to extrapolate possible outcomes of the delivery of therapeutic proteins to tumors in the human body. Another collaboration led to the development of a tumor-on-a-chip where hypoxic conditions can be replicated and investigated, and where the targeting of specific hypoxia markers in tumor cells can be investigated.
00:477 months ago
Immortalized human cells to model atrial fibrillation in vitro
Innovation examples
HealthInnovationIn vitro

Immortalized human cells to model atrial fibrillation in vitro

Niels Harlaar is a PhD Candidate at the Laboratory of Experimental Cardiology at the Leiden University Medical Center. Here, under the supervison of prof. dr. D.A. Pijnappels and dr. A.A.F. de Vries, he focusses on the conditional immortalization of human atrial cardiomyocytes for (among many other applications) in vitro modelling of atrial fibrillation. He has successfully generated, characterized and applied this technique of these conditionally immortalized human atrial myocyte lines to model atrial fibrillation in vitro. Niels is nominated for the Hugo van Poelgeest prize 2022 for excellent research to replace animal testing. Click here (https://hartlongcentrum.nl/research/laboratory-of-experimental-cardiology/) for more information on the Laboratory of Experimental Cardiology.
00:407 months ago
Stichting Proefdiervrij: Collaboration is key
Expert interviews
HealthInnovationPolicy

Stichting Proefdiervrij: Collaboration is key

At Stichting Proefdiervrij (the Dutch society for the replacement of animal testing) we believe that collaboration is essential for the development and implementation of animal-free models. In this video we introduce a few of the ways in which we, as an NGO, collaborate with researchers to reach our goal: the complete replacement of all test on animals
02:079 months ago
Debate about animal testing
Meeting videos
HealthInnovationPolicy

Debate about animal testing

Animal testing contributes to advances in medicine and science in general. But in recent years people have increasingly questioned research using laboratory animals. The European Union and the Dutch government want to be a forerunner in the development and use of innovations that do not involve animal testing, but how do we want to achieve that? What are the challenges and opportunities for biomedical sciences? How do we accelerate the transition towards animal-free innovation? And what does this mean for research into better treatments for animals? In this debate Dutch leaders in the field of animal(-free) testing share their thoughts and opinions.
01:279 months ago
FirstbaseBIO - human brain organoids for studying neurological diseases
Innovation examples
HealthInnovationIn vitro

FirstbaseBIO - human brain organoids for studying neurological diseases

Human neurological diseases are still poorly understood, amongst others because animals are used as a model for the human brain. A way to overcome this problem is to mimic human brain functioning in a dish with organoids. FirstbaseBIO is developing off-the-shelf brain organoids on which neurological diseases can be studied. This 3D platform will be formed by reprogrammed human cells from easily accessible sources, for example urine, skin, or mucosa. The proof of-concept brain organoids will be those from patients who are suffering from adrenoleukodystrophy (ALD), a rare, incurable brain disease that occurs primarily in young boys and is often fatal. With the brain organoid platform, possible medicinal treatments for ALD can be effectively optimised. FirstbaseBIO was nominated for the Venture Challenge 2021 for their development of human brain organoids to study neurological diseases.
03:3324 months ago