Toxicology

ONTOX Hackathon: Hack To Save Lives And Avoid Animal Suffering
Meeting videos
HelpathonsHealthToxicologyData

ONTOX Hackathon: Hack To Save Lives And Avoid Animal Suffering

Artificial Intelligence (AI) in toxicology – a potential driver for reducing or replacing laboratory animals in the future. ONTOX project is looking for solutions and innovative ideas to move forward. Are you going to help ONTOX to hack into these complex challenges? The hackathon will be held from 21 to 23 April 2024 in Utrecht Science Park. The whole event is open to a diverse community of forward-thinkers and problem-solvers interested in the intersection of AI and ethical toxicology. The goal is to bring together passionate individuals who seek innovative solutions to critical challenges in toxicology. Read more about the hackathon and register here (https://ontox-project.eu/hackathon/).
01:0428 days ago
Development of 3D liver spheroids
Innovation examples
HealthToxicologyInnovationIn vitro

Development of 3D liver spheroids

Human-based in vitro models are increasingly being used in the hepatology field. And in addition to the obvious ethical arguments, they offer several advantages over the classical animal models. One of them is the ability to perform mechanistic research at the molecular level in a well-controlled setting and reduce species differences. These liver-based in vitro models can range from simple monolayer cultures of hepatocytes to the liver-on-chips systems in which all liver cells are cultured in a 3D configuration on a microfluidic platform. Liver-based in vitro models must be selected on a case-by-case basis and should fit the purpose of the research, which might go from fundamental to translational research.
01:048 months ago
Platform for in vitro airborne inhalation testing
Innovation examples
HealthToxicologyInnovationIn vitro

Platform for in vitro airborne inhalation testing

The air-liquid interface (ALI) technique uses lung cells cultured on a tiny polymer membrane in a cup. On one side of the membrane is a liquid containing the medium necessary for the cells to survive, while the other side is in contact with air. This is similar to the situation in the human lung. The compound to be tested is administered via an aerosol, vapor, or gas to mimic the situation in human lungs. By monitoring different parameters in the cell model before and after the compound is added, it is possible to measure the effects on lung cells. Depending on the test to be carried out, the lung cells can come from different regions in the respiratory tract and even from a variety of people, including individuals who smoke a lot or have specific diseases such as chronic obstructive pulmonary disease or asthma. In vitro ALI inhalation testing (https://doi.org/10.1021/acs.est.7b00493) adds value for e.g. pre-clinical trials and research in the pharmaceutical industry and testing (new) compounds for the chemical sector and beyond. The advantages of ALI inhalation testing are that it is a non-animal method, it reduces the use of in vivo experiments, pre-clinical testing with human-derived cell models is more realistic and limits clinical trial failures and it provides faster and more efficient testing of compound
04:138 months ago
Stem cell differentiation assays for animal-free developmental neurotoxicity assessment
Innovation examples
ToxicologyInnovationIn vitro

Stem cell differentiation assays for animal-free developmental neurotoxicity assessment

Victoria de Leeuw was a PhD candidate in the research group of prof. dr. Aldert Piersma at the RIVM and Institute for Risk Assessment Sciences at Utrecht University. Piersma's lab studies the effects of compounds on development of the embryo during pregnancy with, among other techniques, stem cell cultures. The project of Victoria was aimed to differentiate embryonic stem cells of mouse and human origin into neuronal and glial cells, which could mimic parts of differentiation as seen during embryonic brain development. These models were able to show some of the known toxic mechanisms induced by these compounds, congruent with what they we hypothesised to mimic. This provides mechanistic information into how chemical compounds can be toxic to brain development. Therefore, these two stem cell assays make a useful contribution to the animal-free assessment of developmental neurotoxicity potential of compounds. Victoria is nominated for the Hugo van Poelgeest prize 2022 for excellent research to replace animal testing.
00:4316 months ago
GUTS BV - small intestine-on-a-chip and advanced computational analysis for compound and protein screening
Innovation examples
HealthToxicologyIn vitro

GUTS BV - small intestine-on-a-chip and advanced computational analysis for compound and protein screening

GUTS BV is a contract research organization offering its 3-dimensional state-of-the-art small intestinal in vitro model in combination with custom computational analysis approaches. The small intestinal model was developed during Dr. Paul Jochems PhD research at Utrecht University in the group of Prof. Roos Masereeuw. In comparison to the current gold standard (Transwell model), they show improvement in cell differentiation (all major specialized cell types present), physiological structure (3D tube- and villi-like structures) and a functional epithelial barrier. After acquiring experimental data from this model computational analysis approaches are used to score and compare measured compounds for all tested biological parameters at once. The combined effort of improved in vitro modelling and data analysis is believed to result in an enhanced preclinical predictability. GUTS BV was nominated for the Venture Challenge 2021 for their development of an intestinal model combined with advanced computational analysis for protein and chemical compound screening. Research papers: https://www.sciencedirect.com/science/article/pii/S0887233318307811 https://www.mdpi.com/2072-6643/12/9/2782/htm https://www.nature.com/articles/s41538-020-00082-z LinkedIn: https://www.linkedin.com/company/71016128/
02:112 years ago
Human neuronal cell models for in vitro neurotoxicity screening and seizure liability assessment
Innovation examples
ToxicologyInnovationIn vitro

Human neuronal cell models for in vitro neurotoxicity screening and seizure liability assessment

Anke Tukker was a PhD candidate in the Neurotoxicology Research group of Dr. Remco Westerink at the Institute for Risk Assessment Sciences at Utrecht University. Dr Westerink’s research group investigates the mechanisms of action of toxic substances on a cellular and molecular level using in vitro systems. Anke's project aimed to develop a human induced pluripotent stem cell (hiPSC)-derived neuronal model for in vitro neurotoxicity screening and seizure liability assessment. Using micro-electrode arrays (MEAs), she showed that these models mimic in vivo neuronal network activity. When these hiPSC-derived neurons are mixed with hiPSC-derived astrocytes, they can be used for in vitro seizure liability assessment. Comparing these data with data obtained from the current used model of ex vivo rodent cortical cultures, she found that these human cells outperform the rodent model. Here research thus contributes towards animal-free neurotoxicity testing. Anke Tukker has won the public vote of the Hugo van Poelgeest prize 2020 for her research on human neuronal cell models for in vitro neurotoxicity screening and seizure liability assessment. Neurotoxicology Research Group, IRAS, Utrecht University: https://ntx.iras.uu.nl/NTXatIras
01:582 years ago
Human pluripotent stem cell derived cardiomyocytes for disease modelling and drug discovery
Innovation examples
ToxicologyInnovationIn vitro

Human pluripotent stem cell derived cardiomyocytes for disease modelling and drug discovery

Berend van Meer did his PhD research in the research group of prof. Christine Mummery at the department of Anatomy and Embryology of the Leiden University Medical Center. In this group, human pluripotent stem cell derived (Organ-on-Chip) models are being developed, mostly cardiovascular models. The work of Berend aimed to understand how well these stem cell based cardiac models can predict the effect of (well-known) drug therapies in patients. Importantly, the outcomes of the experiments were compared to very similar measurements in rabbit heart muscle cells. And while animal models predicted less than 70% correctly, the human stem cell based models predicted almost 80% of the expected effects correctly. The research contributes to understanding the relevance of stem cell based models and strengthens the confidence regulators and pharmaceutical companies have in such models as animal alternatives in the drug development pipeline. Berend van Meer has won the Hugo van Poelgeest prize 2020 for his research on human pluripotent stem cell derived cardiomyocytes for disease modelling and drug discovery. Christine Mummery's lab on Heart on Chip, Disease modeling and toxicity: https://www.lumc.nl/org/anatomie-embryologie/research/902040935402533/
01:562 years ago
Cartilage-on-a-chip for studying joint degenerative diseases
Innovation examples
ToxicologyInnovationIn vitro

Cartilage-on-a-chip for studying joint degenerative diseases

Carlo Alberto Paggi is currently a PhD candidate at the University of Twente in the research group of Prof. Marcel Karperien and Prof. Séverine Le Gac. Karperien’s lab focus on the biological aspects of osteoarthritic research while Le Gac’s specialize in organ-on-chip development. The project of Carlo Alberto is developing a joint-on-chip platform to create a reliable in vitro model to study disease progression in osteo- or rheumatoid arthritis. The model combines different organ-on-chips aimed at replicating each a tissue around the joint such as cartilage, bone and ligaments. This new technology focuses on better reproducing human models and at substituting the use of animal models for drug research. If you want to know something more about the project and the groups, you can follow the link in the video. Carlo Paggi was nominated for the Hugo van Poelgeest prize for his research on a cartilage-on-a-chip model to study joint degenerative diseases Karperien’s lab of Developmental Bioengineering: https://www.utwente.nl/en/tnw/dbe/ Le Gac’s lab of Applied Microfluidics for BioEngineering Research: http://www.severinelegac.com/ Linkedin: https://www.linkedin.com/in/carlo-alberto-paggi-76500b135/
01:582 years ago
Erwin Roggen (ToxGenSolutions)
Expert interviews
ToxicologyIn vitro

Erwin Roggen (ToxGenSolutions)

ToxGenSolutions provides a cutting-edge patchwork of test methods required for modern testing and assessment of compounds and products. It builds on a virtual generic platform of leading test and technology developers providing novel technologies addressing key events in outcome pathways. ToxGenSolutions products are proprietary mechanism-based gene signatures for identification and classification of toxicants during screening, product development and safety assessment. More information on https://toxgensolutions.eu/ .
01:074 years ago
Kirsten Baken (VITO)
Expert interviews
HealthToxicology

Kirsten Baken (VITO)

Kirsten Baken (VITO, www.vito.be) discusses biomonitoring as part of the HBM4EU project (www.hbm4eu.eu). An example of the use of human biomarkers can be found at https://www.sciencedirect.com/science/article/pii/S0013935119302658 .
01:274 years ago
A New Way to Evaluate Chemical Safety and Assess Risk
Various subjects
ToxicologyDataPolicy

A New Way to Evaluate Chemical Safety and Assess Risk

TOX21
06:294 years ago
Stem cell assays for animal-free developmental neurotoxicity assessment of compounds (video in Dutch)
Innovation examples
ToxicologyIn vitro

Stem cell assays for animal-free developmental neurotoxicity assessment of compounds (video in Dutch)

Victoria de Leeuw worked as a PhD candidate in the research group of prof. Aldert Piersma at the RIVM between 2016 and 2020. Piersma's lab studies the effects of compounds on development of the embryo during pregnancy with among others stem cell cultures. The project of Victoria was aimed to differentiate embryonic stem cells (of mouse and human origin) into neurons and astrocytes, which could mimic small parts of embryonic brain development. These models were able to show some of the known toxic mechanisms induced by these compounds, congruent with what they we hypothesised to mimic. Therefore, these two stem cell assays make a useful contribution to the animal-free assessment of developmental neurotoxicity potential of compounds. Onderzoeker: Victoria de Leeuw op het RIVM. Video: Sophie Koster Videoproducties
02:234 years ago